Transverse Meson Structure from Exclusive Measurements

Meson Form Factors

Simple $q\bar{q}$ valence structure of mesons presents the ideal testing ground for our understanding of bound quark systems.

In quantum field theory, the form factor is the overlap integral:

$$F_{\pi}(Q^2) = \int \phi_{\pi}^*(p)\phi_{\pi}(p+q)dp$$

The meson wave function can be separated into φ_{π}^{soft} with only low momentum contributions $(k < k_0)$ and a hard tail φ_{π}^{hard} .

While φ_{π}^{hard} can be treated in pQCD, φ_{π}^{soft} cannot.

From a theoretical standpoint, the study of the Q^2 -dependence of the form factor focuses on finding a description for the hard and soft contributions of the meson wave-function.

pQCD and the Charged Pion Form Factor

At large Q^2 , perturbative QCD (pQCD) can be used

$$F_{\pi}(Q^2) = \frac{4\pi C_F \alpha_S(Q^2)}{Q^2} \left| \sum_{n=0}^{\infty} a_n \left(\log \left(\frac{Q^2}{\Lambda^2} \right) \right)^{-\gamma_n} \right|^2 \left[1 + O\left(\alpha_S(Q^2), \frac{m}{Q} \right) \right]$$

at asymptotically high Q^2 , only the hardest portion of the wave function remains

$$\phi_{\pi}(x) \underset{Q^2 \to \infty}{\longrightarrow} \frac{3 f_{\pi}}{\sqrt{n_c}} x (1 - x)$$

and F_{π} takes the very simple form

$$F_{\pi}(Q^2) \underset{Q^2 \to \infty}{\longrightarrow} \frac{16\pi\alpha_s(Q^2)f_{\pi}^2}{Q^2}$$

G.P. Lepage, S.J. Brodsky, Phys.Lett. 87B(1979)359.

where f_{π} =92.4 MeV is the $\pi^+ \rightarrow \mu^+ \nu$ decay constant.

Pion Form Factor at Finite Q²

- At finite momentum transfer, higher order terms contribute.
 - Calculation of higher order, "hard" (short distance) processes difficult, but tractable.

Q^2F_{π} should behave like $\alpha_s(Q^2)$ even for moderately large Q^2 .

→ Pion form factor seems to be best tool for experimental study of nature of the quark-gluon coupling constant renormalization. [A.V. Radyushkin, JINR 1977, arXiv:hep þ/0410276]

Recent Theoretical Advances

Amazing progress in the last few years.

- We now have a much better understanding how Dynamical Chiral Symmetry Breaking (DCSB) generates hadron mass.
- Quenched lattice QD data on the dressed quark wave function were analyzed in a Bethe Salpeter Equation framework by Bhagwat, et al.
- For the first time, the evolution of the current quark of pQCD into constituent quark was observed as its momentum becomes smaller.
- The constituent-quark mass arises from a cloud of low-momentum gluons attaching themselves to the current quark.
- This is DCSB: an essentially non-perturbative effect that generates a quark *mass from nothing*: namely, it occurs even in the chiral limit.

M.S. Bhagwat, et al., PRC **68** (2003) 015203. L. Chang, et al., Chin.J.Phys. **49** (2011) 955.

Implications for Pion Structure

L. Chang, et al., PRL 110 (2013) 132001; 111 (2013) 141802

Craig Roberts (2016): "No understanding of confinement within the Standard Model is practically relevant unless it also explains the connection between confinement and DCSB, and therefore the existence and role of pions."

■ For the pQCD derivation on slide #3, the normalization for F_{π} has been based on the conformal limit of the pion's twist 2PDA.

$$\phi_{\pi}^{cl}(x) = 6x(1-x) -$$

■ This leads to "too small" F_{π} values in comparison with present & projected JLab data. <

$$\phi_{\pi}(x) = (8/\pi)\sqrt{x(1-x)}$$

■ Simply inputting this $\varphi_{\pi}(x)$ into the pQCD expression for F_{π} brings the calculation much closer to the data.

■ Underestimates full computation by ~15% for Q²≥8 GeV². Addresses issue raised in 1977.

New Lattice QCD at Higher Q²

- Lattice QCD calculations traditionally have difficulty predicting hadron structure at high-momentum transfer.
- Form factors drop rapidly with Q^2 , so one is attempting to extract a much weaker signal from datasets with finite statistics.
- QCDSF/UKQCD/CSSM Collab. address with new technique relating matrix elements to energy shifts.
- Simulate single set of u,d,s gauge configurations corresponding to $m_{\pi} \approx 470$ MeV.
- Confident future LQCD will provide insight into transition of perturbative to non-perturbative QCD.
- HPQCD Collab. study pseudoscalar η_S meson made of valence s quarks accurately tuned on full QCD ensembles of gluon field configurations.
- Qualitatively similar to pion since $m_s < \Lambda_{QCD}$, but numerically much faster.
- F_{π} result flat for 2< Q^2 <6 GeV², far above asymptotic QCD value.
- Confident of future LQCD calcs. at higher Q^2 .

The Charged Kaon – a second QCD test case

- The properties of the K⁺ are also strongly influenced by DCSB.
 - K⁺ PDA also is broad, concave and asymmetric.
 - While the heavier *s* quark carries more bound state momentum than the *u* quark, the shift is markedly less than one might naively expect based on the difference of *u*, *s* current quark masses. [C. Shi, et al., PRD 92 (2015) 014035].
- In the hard scattering limit, pQCD predicts that the π^+ and K^+ form factors will behave similarly: $F_{-}(O^2)$ f_{-}^2

$$F_K(Q) \longrightarrow f_{\pi}(Q^2)$$

■ It is important to compare the magnitudes and Q²-dependences of both form factors.

Measurement of π^+ Form Factor – Low Q^2

At low Q^2 , F_{π} can be measured model-independently via high energy elastic π^- scattering from atomic electrons in Hydrogen

- CERN SPS used 300 GeV pions to measure form factor up to $Q^2 = 0.25 \text{ GeV}^2$ [Amendolia, et al, NP **B277**(1986)168]
- Data used to extract pion charge radius $r_{\pi} = 0.657 \pm 0.012$ fm

Maximum accessible Q² roughly proportional to pion beam energy

Q²=1 GeV² requires 1 TeV pion beam

Measurement of π^+ Form Factor – Larger Q^2

At larger Q^2 , F_{π} must be measured indirectly using the "pion cloud" of the proton via pion electroproduction $p(e,e'\pi^+)n$

$$|p\rangle = |p\rangle_0 + |n\pi^+\rangle + \dots$$

- At small -t, the pion pole process dominates the longitudinal cross section, σ_t
- In Born term model, F_{π}^2 appears as,

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2, t)$$

Drawbacks of this technique

- 1.Isolating σ_L experimentally challenging
- 2. Theoretical uncertainty in form factor extraction.

Measurement of K⁺ Form Factor

Similar to π⁺ form factor, elastic K⁺ scattering from electrons used to measure charged kaon for factor at low Q²

[Amendolia, et al, PL B178(1986)435]

- Can "kaon cloud" of the proton be used in the same way as the pion to extract kaon form factor via p(e,e'K*) \(\Lambda\)?
- Kaon pole further from kinematically allowed region.

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_K^2)} g_{K\Lambda N}^2(t) F_K^2(Q^2,t)$$

Many of these issues will be explored in JLab E12-09-11.

$$2\pi \frac{d^2\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$

- L-T separation required to separate σ_L from σ_T .
- Need to take data at smallest available -t, so σ_L has maximum contribution from the π^+ pole.

Measuring dσ_L/dt at JLab

$$2\pi \frac{d^2\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$

- Rosenbluth separation required to isolate σ_{L}
 - Measure cross section at fixed
 (W,Q², t) at 2 beam energies
 - Simultaneous fit at 2 ϵ values to determine σ_L , σ_T , and interference terms
- Control of point systematic uncertainties crucial due to $1/\Delta\epsilon$ error amplification in σ_L
- Careful attention must be paid to spectrometer acceptance, kinematics, efficiencies, ...

Horn, et al, PRL **97**(2006)192001

Chew-Low Method to determine Pion Form Factor

 $p(e,e'\pi^+)n$ data are obtained some distance from the $t=m_{\pi}^2$ pole.

 \rightarrow "Chew Low" extrapolation method requires knowing the analytic dependence of $d\sigma_L/dt$ through the unphysical region.

Extrapolation method last used in 1972 by Devenish & Lyth

- Very large systematic uncertainties.
- Failed to produce reliable result.
 - \rightarrow Different polynomial fits equally likely in physical region gave divergent form factor values when extrapolated to $t=m_{\pi}^{2}$.

The Chew-Low Method was subsequently abandoned.

Chew-Low Method Check with PseudoData

Plot
$$F^2 = \frac{N}{4\hbar c (eg_{\pi NN})^2} \frac{(t - m_{\pi}^2)^2}{-Q^2 m_{\pi}^2} \frac{d\sigma_L}{dt}$$
 vs. $-t$

- Pure pole cross section gives straight line through origin, with value $F_{\pi}^{2}(Q^{2})$ at pole.
- Other contributions introduce non-linearities since don't contain $(t-m_{\pi})^2$ factor, but don't influence F^2 value at pole.
 - \rightarrow Do not know if behavior of F^2 with -t is linear, quadratic, or higher order.

All fits missed the input F_{π} .

→ no consistent trend on order of polynomial best able to reproduce input value

$$(6-15\% \text{ deviation}, \mathbf{Q}^2=0.6-2.45 \text{ GeV}^2).$$

- ■Experimental σ_L data have only 4-6 *t*-bins and statistical and systematic uncertainties of 5-10%.
 - → Extrapolation with real data will be even more uncertain.

For details see: G.M. Huber et al., PRC 78(2008)045203.

Only reliable approach is to use a model incorporating the π^+ production mechanism and the 'spectator' nucleon to extract F_{π} from σ_{L} .

■ JLab F_{π} experiments use the Vanderhaeghen-Guidal-Laget (VGL) Regge model as it has proven to give a reliable description of σ_L across a wide kinematic domain.

[Vanderhaeghen, Guidal, Laget, PRC 57(1998)1454

- More models would allow a better understanding of the model dependence of the F_{π} result. There has been considerable recent interest:
 - T.K. Choi, K.J. Kong, B.G. Yu, arXiv: 1508.00969.
 - T. Vrancx, J. Ryckebusch, PRC 89(2014)025203.
 - M.M. Kaskulov, U. Mosel, PRD 81(2010)045202.
 - S.V. Goloskokov, P. Kroll, Eur. Phys. J. C65(2010)137.

Our philosophy remains to publish our experimentally measured $d\sigma_L/dt$, so that updated values of $F_{\pi}(Q^2)$ can be extracted as better models become available.

Garth Huber, huberg@uregina.ca

Extract $F_{\pi}(Q^2)$ from JLab σ_L data

Model incorporates π^+ production mechanism and spectator neutron effects:

VGL Regge Model:

■ Feynman propagator $\left(\frac{1}{t - m_{\pi}^2}\right)$

replaced by π and ρ Regge propagators.

- Represents the exchange of a <u>series</u> of particles, compared to a <u>single</u> particle.
- Free parameters: Λ_{π} , Λ_{ρ} (trajectory cutoff)

[Vanderhaeghen, Guidal, Laget, PRC 57(1998)1454]

• At small -t, σ_L only sensitive to F_{π}

$$F_{\pi} = \frac{1}{1 + Q^2 / \Lambda_{\pi}^2}$$

Fit to σ_L to model σ_L gives F_{π} at each Q^2

Error bars indicate statistical and random (pt-pt) systematic uncertainties in quadrature.

Yellow band indicates the correlated (scale) and partly correlated (t-corr) systematic uncertainties.

 $\Lambda_{\pi}^2 = 0.513$, 0.491 GeV², $\Lambda_{\rho}^2 = 1.7$ GeV².

Garth Huber, huberg@uregina.ca

JLab Current and Projected Data

JLab 12 GeV upgrade will allow measurement of F_{π} to much higher Q^2 .

No other facility worldwide can perform this measurement.

New overlap points at $Q^2=1.6, 2.45$ will be closer to pole to constrain- t_{min} dependence.

New low Q^2 point will provide best comparison of the electroproduction extraction of F_{π} vs. elastic $\pi + e$ data.

The ~10% measurement of F_{π} at Q²=8.5 GeV² is at higher $-t_{min}$ =0.45 GeV². Requires additional measurements (not yet approved) to verify π -pole dominance in σ_{L} .

EIC Exclusive $p(e,e'\pi^+n)$ Kinematics

ε>0.995 fairly straightforward.

- 5 GeV(e⁻) x 100 GeV(p), allows access to a wide kinematic range.
- Lab cross sections in µb/sr²/GeV.
 - C. Weiss, V. Guzey (2008) extrapolation of soft model cross section to high Q², assuming QCD scaling behavior and W²≫Q².

Q^2	W	P _e ,	θ_e ,	P_{π}	$ heta_\pi$	P_n	θ_n	-t	$d^3\sigma$
10.0	7.0	5.4	35.6	16.9	-10.6	83.7	-0.01	0.032	1.1
15.0	7.0	5.6	43.0	23.2	-9.4	77.2	-0.02	0.066	0.34
20.0	7.5	5.8	49.0	25.7	-9.8	74.4	-0.02	0.085	0.12
25.0	8.5	6.0	54.2	25.0	-11.2	74.9	-0.02	0.081	0.039
30.0	9.0	6.2	58.8	26.1	-11.7	73.6	-0.02	0.090	0.019
35.0	9.5	6.4	62.8	26.8	-12.3	72.7	-0.02	0.098	0.010

High ε>0.995 Detector Requirements

- Only way to assure exclusivity of the $p(e,e'\pi^+n)$ reaction is by detecting the recoil neutron.
 - Neutrons are emitted at small angle (θ <0.05°), momentum 73-84% of the proton beam. Resolution?
- Scattered electron (5 GeV e⁻x 100 GeV p):
 - Scattered electron angles of 35°-63° (wrt incident electron beam).
 - Resolution requirements modest (δP/P≈5x10⁻³, δθ≈1mr)
 - Kinematics were chosen to avoid regions where cross sections drop rapidly, needing high resolution for small systematic errors.
- 17-26 GeV/c π^+ detected at forward angle (9.5°-12.5°)
 - Will need reliable PID. e.g. ePHENIX concept in White Paper has Aerogel & RICH up to ~40°.
- Requirements appear to be compatible with both eRHIC and JLEIC detector conceptual designs.
 - →The critical issue is identification of the exclusive events.

5x100 Exclusive $p(e,e'\pi^+n)$ Kinematics

p(e,e'K+1) Requirements

$$M_X = \sqrt{(E_{\text{det}} - E_{init})^2 - (p_{\text{det}} - p_{init})^2}$$

- At EIC CM energies, exclusive π , K cross sections are likely more comparable, statistics likely to be less of an issue than at JLab.
- Assuring exclusivity poses many challenges.
 - $\Lambda\Sigma$ final states are closer together in missing mass than n, n+ π .
 - $\Lambda c\tau = 7.89$ cm.
 - Planned vertex detectors cover central rapidity range, while in these kinematics Λ is at very small angle to proton beamline.
- Would need $\Lambda \rightarrow \pi^- p$ simulation. Requirements similar to EIC K^+ structure function measurement.

JLab Hall C simulation at Q²=2.0 GeV², W=3.0 GeV and high ϵ

How to separate σ_L from σ_T in e-p Collider

$$\varepsilon = \frac{2(1-y)}{1+(1-y)^2} \text{ where the fractional energy loss } y = \frac{Q^2}{x(s_{tot} - M_N^2)}$$

- Systematic uncertainties in σ_L are magnified by $1/\Delta\epsilon$.
 - Desire Δε>0.2.
- To access ε <0.8, one needs y>0.5.
 - This can only be accessed with small s_{tot},
 i.e. low proton collider energies (5–15 GeV),
 where luminosities are too small for a practical measurement.
- A conventional L-T separation is impractical, need some other way to identify σ_L .

σ_L via Beam and Target Polarization

Although the technique has not been tested for this reaction, it is in principle possible to extract $R=\sigma_L/\sigma_T$ using polarization degrees of freedom

For parallel kinematics (outgoing meson along \vec{q}) in proton rest frame

Longitudinal polarization of virtual photon

z-component of proton "reduced" polarization in exclusive pseudoscalar meson production

$$R = \frac{\sigma_L}{\sigma_T} = \frac{1}{\varepsilon_L} \left(\frac{1}{\chi_z} - 1 \right)$$

$$\varepsilon_L = \left(Q^2 / \omega_{cm}^2\right) \varepsilon$$

$$\chi_z = \frac{1}{2P_e P_p \sqrt{1 - \varepsilon^2}} A_z$$

 A_z = double-spin asymmetry

Schmieden, Tiator Eur.Phys.J. A 8(2000)15 7.

Polarization Technique Considerations

- A point in favor of this technique is that P_p (component of proton polarization parallel to \vec{q}) should be readily optimizable at EIC.
- Need to keep in mind that the $R=\sigma_L/\sigma_T$ polarization relation only strictly applies in parallel kinematics.
 - The detector geometry enforces very tight constraints, as recoil neutron angle is very sensitive to θ_{CM} .

$$\sigma_L \propto P_e P_p \sqrt{1-\epsilon^2} A_z$$

- Figure of merit for this technique vanishes for ε≈1.0.
- $\epsilon \approx 0.95$ gives $\sqrt{1-\epsilon^2} \approx 0.31$
- Requires E_{CM} <20 GeV, e.g. 3x25. Luminosity low.
- At best, this could be used as a spot-check only in specific kinematics. Generally not feasible.

Isolate σ_L using a Model

- In the hard scattering regime, QCD scaling predicts $\sigma_L \propto Q^{-6}$ and $\sigma_T \propto Q^{-8}$.
- At high Q^2 , W accessible at EIC, phenomenological models predict $\sigma_L \gg \sigma_T$ at small -t.
- The most practical choice might be to use a model to isolate dominant $d\sigma_L/dt$ from measured $d\sigma_{LNS}/dt$.
- In this case, it is very important to confirm the validity of the model used.

- T. Vrancx, J. Ryckebusch, PRC 89(2014)025203.
- Predictions are for ε >0.995 Q^2 , W kinematics shown earlier.

π^-/π^+ data to check *t*-channel dominance

 $\blacksquare \pi$ *t*-channel diagram is purely isovector (G-parity conservation).

$$R_{L} = \frac{\sigma_{L}[n(e, e'\pi^{-})p]}{\sigma_{L}[p(e, e'\pi^{+})n]} = \frac{|A_{V} - A_{S}|^{2}}{|A_{V} + A_{S}|^{2}}$$

■ Isoscalar backgrounds (such as $b_1(1235)$ contributions to *t*-channel) will dilute ratio.

- Qualitatively in agreement with our F₊ 1analysis:
 - We found evidence for small additional contribution to σ_L at W=1.95 GeV not taken into account by the VGL model.
- We found no evidence for this contribution at W=2.2 GeV.

Similar approach to confirm $\sigma_L \gg \sigma_T$ at EIC

- Exclusive ${}^{2}H(e,e'\pi^{+}n)n$ and ${}^{2}H(e,e'\pi^{-}p)p$ in same kinematics as $p(e,e'\pi^{+}n)$
- $\blacksquare \pi$ *t*—channel diagram is purely isovector (G parity conservation).

$$R = \frac{\sigma[n(e, e'\pi^{-}p)]}{\sigma[p(e, e'\pi^{+}n)]} = \frac{|A_{V} - A_{S}|^{2}}{|A_{V} + A_{S}|^{2}}$$

- The π^-/π^+ ratio will be diluted if σ_T is not small, or if there are significant non-pole contributions to σ_L .
- Compare measured π^-/π^+ ratio to model expectations.

EIC Kinematic Reach (Very Tentative)

Assumptions:

- $5(e^{-}) \times 100(p)$.
- Integrated L=20 fb⁻¹/yr.
- Identification of exclusive p(e,e'π⁺n) events.
- 10% exp. syst. unc.
- $R=\sigma_L/\sigma_T$ from VR model, and π pole dominance at small -t confirmed in ²H π - $/\pi$ + ratios.
- 100% syst. unc. in model subtraction to isolate σ₁.

Much more study needed to confirm assumptions.

Summary

- Higher Q² data on the pion form factor are vital to our better understanding of hadronic physics
 - Pion properties are intimately connected with dynamical chiral symmetry breaking (DCSB), which explains the origin of more than 98% of the mass of visible matter in the universe.
 - F_{π} is our best hope to directly observe QCD's transition from confinement-dominated physics at large length-scales to perturbative QCD at short length-scales.
- Measurement of F_{π} at EIC involves significant challenges.
 - Need good identification of p(e,e'π⁺n) triple coincidences.
 - Conventional L-T separation not possible due to low proton ring energies required to access ε<0.8.
 - Use of polarization degrees of freedom with $\varepsilon \approx 0.95$ seems very difficult due to low E_{CM} required.
 - As $\sigma_L \gg \sigma_T$ expected, most likely possibility is to use model to extract σ_L from $d\sigma_{UNS}/dt \rightarrow Used$ also for $Q^2=10$ GeV² Cornell expt (1978).
 - Best to use exclusive π^-/π^+ ratio in e+d collisions to validate model.
 - Looks promising, but more studies are needed.